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Preface

In front of you lies the thesis “Local fabrication of a custom-fit finger splint, using parametric design and 
additive manufacturing”, a design research to address guidance in the quality and safety of medical 
device manufacturing in the context of digital fabrication and the Maker Movement. It has been written 
to fulfil the graduation requirements of the master degree Biomedical Engineering at the University of 
Groningen. I was engaged in researching and writing this thesis from March until September 2016. 

The project was undertaken at the Creative Care Lab at Waag Society. The Waag Society explores 
emerging technologies, and provides art and culture a central role in the designing of new applications 
for novel advances in science and technology. The Creative Care Lab concentrates on the design issues 
found in the field of healthcare. In the context of MakeHealth -  a programme that explores a crossover 
between Healthcare and the ‘Do It Yourself’ makers culture of Fab Lab – Software developer Taco van 
Dijk and Designer Mickael Boulay developed a working demo of an app on a tablet to generate a ready-
to-be-3D-printed finger splint. This concept seemed like a potential breakthrough, but it was still unclear 
where such a product has to meet for a potential market introduction. 

I was challenged to identify the quality and safety requirements for such a ‘customized’ orthosis. During 
the project, I got fascinated by approaching it as a design case to see what happens when such a novel 
technology meets the traditional pathways of medical device development.  Due to the simplicity of a 
finger splint, I was able to approach this design case from the many different aspects of medical device 
development. I learned the skill of parametric modelling and 3D-printing; immersed myself in regulatory 
rules and guidelines; discussed the ethical issues; analysed the biomechanics and materials science; 
looked into strategies for market introduction; acquired knowledge of digital fabrication and got inspired 
by the Maker spirit. With this study I hope to provide an example of how additive manufacturing can be 
guided to find their way to patient’s and healthcare professionals in a responsible manner,  and I hope 
more will follow soon. 

I am very grateful to my supervisor at the Waag, Jurre Ongering, and my supervisor at the University of 
Groningen prof. dr. ir. G.J. Verkerke. Thank you sincerely for your help, guidance, and support during 
the project. I also like to thank my colleagues at the Creative Care Lab for making me feel part of the 
team: Sabine Wildevuur, Pauline Melis, Janine Huizinga and Hester van Zuthem, it was inspiring to work 
with you. And to my colleagues at Fab Lab, Nicolo Merendino and Nina Papakonstantinou , thank you 
for teaching me the ‘maker’ skills. Furthermore, I would like to thank all external contacts four their help 
and advice during the project: Ing. H.M kuis (RUG), R. Groeneveld (Oceanz), T. Heitman (Zaans Medical 
Centre), Mattie Dapper (VUMC), prof. dr. C.K. van der Sluis (UMCG), N. Liberton (3D-innovatie Lab 
VUMC), P. van Ooijen (3D-innovatie Lab UMCG). 

I hope you enjoy reading,

Ida Poortinga

Amsterdam, September 14, 2016.



Abstract

The rise of digital fabrication and the Maker Movement has enabled people to start playing an active role 
in devising and developing their own medical devices. The benefit of digital fabrication for healthcare 
is its ability to rapidly alter size and shape of orthoses to meet specific patient sizes and needs. In 
addition, digital fabrication offers an on-demand supply chain that potentially increases sustainability of 
the medical device industry. However, more clarification is needed to point out whether it is feasible to 
locally 3D-print a customized orthosis that can be considered safe and effective.

This study aims to revisit medical product development in the context of the aforementioned rise of additive 
manufacturing and the maker movement. Therefore, the following research question is addressed: “Can 
digital fabrication enable patient access to local fabrication of customized orthoses with the quality 
and safety of professionally-graded medical devices?” Quality and safety is hereby approached with 
reference to the regulatory rules and guidelines for medical devices. This research question is addressed 
by means of the design specific case study of the customizable finger splint. 
 
The first part of this study explores the effects of digital fabrication on the quality, safety and access 
customized orthoses. This reveals that still many challenges need to be overcome for a successful 
clinical application. First, the current regulatory system does not seem suitable for local fabrication of 
personalized medical devices. Second, it reveals that the underlying technique of additive manufacturing 
limits material options and negatively affects the quality and mechanical safety of the printed object. 
Third, it demonstrated that the access to digital fabrication is still restricted to people with 3D-modelling 
skills and knowledge of additive manufacturing. The second part of this study, the development of the 
finger splint, made clear that these challenges can be tackled. The provided solution is an application 
that enables the hand therapist or patient to 3D-print a customized finger splint, without need the for 
3D-modelling skills or knowledge of digital fabrication. This is enable by parametric design software 
and a ISO-certified 3D-printing service. From this it can be concluded that digital fabrication can be 
guided to enable patient access to local fabrication of customized orthoses with the quality and safety of 
professionally-graded medical devices.

Drawbacks of the provided solution are fabrication- and delivery time resulting from the selected 
manufacturing process. In order to enable fabrication closer to the patient, future research should be 
focussed on the development of 3D-printers suitable for implementation within the clinic of the hand 
therapist. A second drawback of the provide solution is that the design freedom is limited design by the 
parametric input. In order to allow automated modelling of more complex orthoses, parametric software 
should be further developed with the aim of orthoses design. Now that the possibilities of parametric 
design and additive manufacturing are approved to be successful for local fabrication of orthoses, it 
is recommended to further develop the final solution for introduction to the market. This would be an 
important step in the accomplishment of on-demand production and mass-customization in the context 
of healthcare.
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Introduction

Searching different combination of the search terms ‘Do It Yourself (DIY) Finger splint’ on Google, 
reveals many examples of how to create a finger splint oneself. Adding ‘3D’ to the search terms, 
even reveals a variety of design files that is freely shared over the Internet. It seems like one 
could easily make a finger splint from the comfort of his or her own home, just by clicking the 
bottom ‘print now’. With some 3D-modelling skills, a healthcare practitioner, rheumatic patient, 
or other person could even start creating a personal design. One could imagine orthoses design 
breaking free from the traditional healthcare institutions and production processes that it was 
constricted to for many years.

The scenarios described above are enabled by the emergence of additive manufacturing, also referred 
to as 3D-printing, and unlimited access to knowledge through the Internet. which has made it possible 
for individuals to develop and locally fabricate their own products. This has led to a so-called Maker 
Movement. It is of interest to explore the developments arising from this Maker Movement and the 
emergence of digital fabrication in the context of healthcare, as it potentially opens up possibilities for 
local fabrication of custom-made orthoses. 

This thesis is focussed on revisiting medical product development in the context of the aforementioned 
rise of additive manufacturing and the maker movement. The following research question is addressed: 
“Can digital fabrication enable patient access to local fabrication of customized orthoses with the quality 
and safety of professionally-graded medical devices?” This research question will be discussed by 
means of the design specific case study of the customizable finger splint. 

The traditional medical device industry is strictly regulated to enable patient access to high quality, safe 
and effective medical devices, and restricting access to those products that are unsafe or have limited 
clinical use. While in the in the context of open design and DIY- culture, official approval is not required. 
The popularity of digital fabrication in orthoses design is clearly present, yet little can be found to actually 
be used in a clinical setting. Clarification is therefore needed to point out whether it is feasible to locally 
3D-print a customized orthosis that can be considered safe and effective. The first part of this study aims 
to reveal the challenges that might limit a successful introduction in a clinical setting. The second part 
of the study, the design case, aims to provide one specific solution that confirms the feasibility of locally 
3D-printing a customized finger splint.



1 Methodology         

This chapter describes the research approach and the design methodology for the 
case study of the finger splint, that is used to address the research question.

1.1  Research approach
1.2  Design methodology
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1. Methodology

1.1 Research approach

The research question will be discussed by developing a customizable finger splint for local fabrication 
using digital fabrication. The first part of the study includes a background study to explore how the 
rise of digital fabrication and the Maker Movement affects the quality, safety and access of customized 
orthoses. Therewith the following sub-question will be answered: “What are the expected challenges 
of the aforementioned changing manufacturing landscape in which medical devices could possibly 
be introduced”? During this study, the European guideline for medical devices will be used to provide 
guidance in the validation of quality and safety. These findings form the foundation for revisiting biomedical 
products design and manufacturing. In the second part of the study, the development of the finger splint 
will be completed to address how the expected problems can be tackled. This will be done following the 
design method as described below.

1.2 Design methodology

Many methods are available for designing consumer products. However, for designing biomedical 
products these methods cannot be used directly, since the circumstances are quite different from 
designing consumer products. The development of biomedical products is a multidisciplinary specialism 
covering several knowledge areas, like biomechanics, biomaterials, transport phenomena, tissue 
engineering, medical physics, physiological modelling and interaction, medical informatics, artificial 
intelligence and biotechnology (10). 
The design method for designing biomedical products by Verkerke, G.J and van der Houwen, E.B is, is 
developed to account for such issues. Because of this multidisciplinary approach, this method is used 
for the design study of the finger splint.

The design methodology is depicted on the next page in Figure 1.1. It distinguishes five phases, the 
analysis phase, three synthesis phases and the use-phase. Each phase contains several activities. In 
the analysis phase the given problem is analysed extensively; the fundamental problem is defined; the 
goal and required functions of the solution are defined and a list of requirements is made. In Synthesis 
I various solutions for the formulated fundamental problem are generated, with plenty of creativity and 
design freedom, a few ideas are combined into what are called pre-concepts. The best solution for the 
problem is selected by evaluating the solutions on meeting the requirements. The three best concepts are 
further detailed into concepts in Synthesis II. Then the best concept is selected. In synthesis III the final 
selected concept is worked out in detail; prototyped; tests are performed to make a proof-of-principle; 
and the product manufacturing process is developed.

15

Figure 1.1: Methodical process for designing biomedical products.
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1. Methodology

For the purpose of this study, the structure of the synthesis phases is altered from the original structure 
suggested by Verkerke, G.J and van der Houwen, E.B. Since this design study aims to focus on 
rethinking an existing solution (a finger splint) with reference to the application of new and more innovative 
technologies (digital manufacturing). Inherent to designing the configuration of the product, is selecting 
the proper material and manufacturing technique. The material dictates the production method, the 

production method dictates the configuration of the design, and the configuration dictates its function. 
It is also possible to follow a totally reverse process. Both approaches have their own rationale for doing 
so: it’s a circle of function, design, manufacturing and material. In the context of this study the following 
approach is most suitable: The manufacturing method dictates the material, and both the manufacturing 
method and material dictate the design (figure 1.2)

Therefore, Instead of creating new ideas for the medical problem, Synthesis I will focus on the creation 
and selection of material and manufacturing concepts. Synthesis II continues with the generation of three 
new designs adapted to the previously selected material and manufacturing process. Now that the basic 
structure of the method has been introduced in this chapter, the following chapters will address these 
phases in more detail. By doing so, describing the design process of the finger splint will go hand in hand 
with a further elaboration of the methodical model. 

Figure 1.2: The relations between design, material and manufacturing technique

17



2 Context
         

In this Chapter the Maker Movement and the concept of digital fabrication is 
introduced. The opportunities of the cross-over between the Maker Movement, 
digital fabrication and healthcare will be described, and addresses to the relevance 
of this study. The current developments in these fields are explained at the end of 
this chapter.

2.1  The Maker Movement
2.2  Digital fabrication
2.3 Current developments
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2.1 The Maker Movement

The emergence of additive manufacturing and unlimited access to knowledge via the Internet 
enabled individuals to develop their own products. This has led to a so-called Maker movement. 
This paragraph introduces the Maker Movement and addresses how this movement creates 
possibilities for both patient and professional.

2.1.1 The Maker Movement 

The Maker Movement is as a community of people determined to create their own products using digital 
fabrication tools like CAD-programs, laser cutters and 3D printers (1). The Maker Movement is spreading 
worldwide over different disciplines. Online maker communities, physical makerspaces, and maker fairs 
arise and continually grow in size and participation (2). This online and offline community brings together 
a wide range of people including scientists, engineers, entrepreneurs, designers and citizen inventors, to 
share ideas and build products. The technology and the community both represent the basic principles 
for the current modification and building of tangible things. 

The movement is unified by a commitment of open exploration by sharing knowledge, open-source soft- 
and hardware tools and open design files, and is supported by the Internet in different ways: From the 
sharing of design files and code libraries to social support, and online knowledge exchange. Open 
innovation The difference that Internet and open exploration creates in the make-process is defined as: 
“Make-it stands for making tangible objects specified and designed as virtual ‘bits’ which can be shared 
globally but then reproduces as things which manifest themselves locally – blurring the interface between 
the virtual and the physical ”(3). 

This digitalized make-culture offers new opportunities to individuals, communities and organizations to 
innovate, design and make physical products based on manipulation and sharing of virtual bits (3). This 
also creates the need and will to open up more devices, to understand their inner workings and their 
outside impact, in order to redesign and personalize them. 

2.1.2  Impact on healthcare

This quickly growing maker movement empowers people to become more self-reliant and connects 
communities to be collaborative in creating the tangible things they use. One can imagine this spreading 
towards the field of healthcare as well. Enabling people to become active makers of their own medical 
devices, will significantly contribute to the empowerment of patients (4). Therefore, the make-philosophy 
in the context of healthcare complies with the new positive definition of health defined by Huber et al. 
(2011) whereby health is approached as “the ability to adapt and self-manage, in the face of physical, 
emotional and social challenges” (5). This definition approaches health as a personal challenge instead 
of it being something that one simply is or isn’t. The approach of Huber opens possibilities for a paradigm 
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shift that enables people to start playing an active role in devising and developing their own medical 
devices that will positively impact their health. 

2.2 Digital fabrication 

The following paragraphs will describe the tools and technology of digital fabrication and how 
this changes the manufacturing landscape. The last paragraph address how digital fabrication 
can contribute to sustainability technical innovations in a healthcare context.

2.2.1 Digital fabrication

The power of the Maker Movement is catalysed by the rise of digital manufacturing. Digital fabrication 
tools like Computer Aided Design (CAD) – software, additive manufacturing, laser cutters or a CNC-milling 
machine enable personal, flexible and local fabrication. For the purpose of study we only focus on the 
CAD-software and additive manufacturing. Using computer aided design a virtual 3D-model (CAD-file) 
can be created. Additive manufacturing is a more technical term for 3D-printing, and covers a range of 
technologies that translate the virtual data into a physical model. During this process the virtual 3D-data 
is sliced into 2D-cross section of a specified thickness, from which the physical 3D-model is build up by 
the machine in a layer-by-layer sequence. Compared to traditional fabrication methods, this technique 
enables rapid production of unique, personalized products.
Makerspaces and professional online 3D-print services provide public access to digital fabrication 
tools and expertise. Makerspaces support makers by providing workshops into digital fabrication skills, 
the necessary soft- and hardware and the space where members are free to work on whatever they 
want under supervision and mentoring (4). Fab Lab is a global community of qualified Makerspaces 
all sharing common tools and processes forming a distributed laboratory for research, invention and 
entrepreneurship (7). The democratizing access to these professional-grade tools for personal fabrication 
is enabling makers to make almost anything (6). While professional 3D printer companies provide the 
service have your product delivered at home, just by uploading the file.  

2.2.2 Impact on industry and healthcare

The accessibility of additive manufacturing rapidly changes the way everything around can be designed, 
made and distributed. The emergence of affordable and flexible manufacturing methods has created 
an alternative supply chain. Products are no longer physically distributed, but as digital files that can be 
printed everywhere. Customized products make up an increasing portion of the market consequently 
eroding the mass-produced portion of the market (8). This on-demand production close to the patient 
increases sustainability of the medical device industry, as it substantially reduces the carbon footprint of 
manufacturing and transport (8). 
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In multiple studies additive manufacturing is embraced as a promising technique for orthoses (9-12). 
Compared to prefabricated orthotic devices, custom-fit orthoses provide individualized comfort and 
function. Currently, laborious and time-intensive methods need to be performed by skilled therapist to 
provide a custom-fit. The added value of additive manufacturing lies in the fact that this method makes it 
possible to locally create personalized devices, both in terms of fit and functionality (12). And the ability 
to rapidly alter size and shape of these devices to meet specific patient needs decreases fabrication time 
and cost especially in case of a replacement (9). In addition, imagine when the assembly function moves 
closer to the end user, the designer can integrate aesthetical preferences of the end-users like, colour, 
texture or material. The local aspect enables patients to play an active role in devising and developing 
medical devices. 

2.3 Current developments

Additive manufacturing has rapidly penetrated the medical device industry over the past several years, 
and innovative groups and individuals have harnessed it to create devices with unique composition, 
structure, and customizability (13). 

A search on ThingiVerse or Instructables, websites for sharing and distributing designs for 3-D printing, 
uncovers various design files for orthotic and prosthetic devices like finger splint, braces, and even a “DIY 
hip replacement,” all available to download (14). In addition to these individual projects developments 
also occur in a more organized context. By means of peer-peer manufacturing co-creation takes 
place between designers and patients. An organisation that embraces peer-to-peer manufacturing is 
E-nablethefuture. This organisation brings together children and designers together to enables children 
with prosthetics that printed in Makerspaces (15). Health making communities, like MakerNurse, arise that 
support and motivate individuals working in healthcare to create their own solutions (16). And by means 
of peer-peer manufacturing co-creation takes place between designers and patients. Furthermore, in 
hospitals 3D innovation labs pop up where surgeon’s work in close collaboration with engineers to create 
innovative solutions to optimize care involving digitally modelling an additive manufacturing. In these kind 
of ways the Maker Movement and digital fabrication accelerates innovation of prosthetics and orthotics 
by prototyping new and exciting designs.

The popularity of digital fabrication in orthoses design is clearly present, but yet little was found to be 
used in a clinical setting. Next chapter will explore the challenges that might withhold these innovative 
new products from a market introduction. As more clarification is needed to point out whether it is feasible 
to locally 3D-print a customized orthosis that can be considered safe and effective. Regarding the 
relatively new field of digital fabrication and healthcare, no studies were found that specifically address 
the guidance or analyzation of quality and safety in the context of local and personal fabrication of 
medical devices. 
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3 Background study
         

This chapter explores digital fabrication and the Maker Movement affects the 
quality, safety and accessibility of customized orthoses. Therewith the following 
sub-question will be answered: “What are the expected challenges of the 
aforementioned changing manufacturing landscape in which medical devices could 
possibly be introduced”? These challenges will be categorized under regulatory, 
technological and clinical challenges. This chapter is composed of the following 
items:

3.1  Regulatory challenges
3.2  Technological challenges
3.3  Clinical challenges
3.4 Conclusions and implications for the design project
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3.1 Regulatory challenges

Compared to most consumer products, safety and reliability is paramount for medical devices. The medical 
device industry is highly regulated by the National Regulatory Authority (NRA), to protect public health. 
According to the World Health Organization (WHO) “The overall objective of a NRA for medical products 
is to ensure that all medical devices are of assured quality, safety and efficacy and are accompanied by 
appropriate information to promote their rational use” (1). Article 2 of the European guideline for medical 
devices states that a medical device can only be put on the market when the requirements stated in 
the guideline are met (2). In Europe the CE (“European Conformity”) mark is used to declare that the 
product complies with the essential requirements stated in the Medical Device Directive (3).  In order for 
a medical device to get the certification, a pre-market notification (PMA), also known as a 510k approval, 
is required(4). A 510(k) is a pre-marketing submission to demonstrate that the device to be marketed is 
as safe and effective. The applicant must receive approval of its PMA application prior to marketing the 
device by a regulatory authority, the Notified Body. 

According to the medical device definition and classification rules of the European Medical Device Directive 
(MDD), a finger splint is a limb orthoses, which is classified as a low risk medical device (5). A class I 
medical device does not require the involvement of a Notified Body. But the manufacturer is responsible 
for ensuring that his product complies with all the relevant Essential Requirements of the Directive and 
must draw up a written statement to this effect (self-certification). They will be audited regularly to see 
if they have this quality control system in order. Furthermore, a custom-made medical devices can be 
exempted from official regulations (6). In this case the medical practitioner is held responsible instead of 
the manufacturer. A more detailed description, including the MDD’s essential principles checklist, of the 
European rules and guidelines for marketing a finger splint can be found in Annex 3.1. 

However, these rules and guidelines were designed for mass production in industry and seem less 
suitable for local fabrication of personalized devices. Since in the context of local, digital fabrication 
and the open exploration of the Maker Movement, the fundamental definitions of a ‘medical device’, 
‘manufacturer’ and ‘custom-made’ get blurred, as explained below.  

Medical device
In the new manufacturing landscape, a medical device not only relates to a tangible product, but also to 
a digital file that can be freely shared over the Internet and locally manipulated and manufactured. Could 
the regulatory authorities evaluate the designs themselves in addition to the devices? Subsequently, 
the regulatory process could be divided in two: regulation of the digital files and regulation of the on-
site manufacturing process. The print process technically falls under manufacturing regulation (Quality 
System Regulations). While the device itself falls under other regulations like the premarket approval 
(PMA).  However, separate approval of the design file imposes quite a challenge, since quality and safety 
is not solely inherent to the design file but also to the manufacturing process.  

The manufacturer
In addition, the manufacturing regulation also becomes a considerable challenge. In the current system 
the manufacturer is defined as “any person who designs, manufacturers, fabricates, assembles, or 
processes a finished device”(7). With the rise of additive manufacturing anyone with access to a 3D 
printer can become a “manufacturer”, and can personalize a design to make the product according to 
his personal needs and want. In this situation the final product is distributed, created and manufactured 
by various parties. For instance, the designer of the originally shared file; the end-user modifying the 
file; the manufacturer of the raw materials; the manufacturer of the printer; the facility where the printer 
is accessed; the final maker and possibly the people instructing him. In this context several supply-
chains are optional: business to consumer when an individual makes use of a professional 3D-printing 
services; business to business when a company uses a professional 3D-printing service; consumer to 
business when an individual makes products for a company; or consumer to consumer when one makes 
a product for another individual, which is called peer-to-peer manufacturing. Due to the disappearance 
of a standardized supply-chain and manufacturer, the final device can vary considerable as different 
printers and settings can be used. While reproducibility is paramount for manufacturing regulation to 
ensure quality and safety (4).

The blurred line between manufacturers and end-users also creates challenges in apportioning 
liabilities and poses traceability issues (7). Traceability is part of the Quality Management System of the 
manufacturer, with the purpose to facilitate notifications and recalls in the case of serious risks to health 
presented by the devices. It provides the ability to trace the history, application, or location of an item or 
activity by means of recorded identification. For insurers it will be difficult to identify the liable party for 
injuries caused by a defect product, when this is creation and manufacturing process is attributed by 
various parties. Therefore, it is necessary to mitigate risks at each stage from creation and modification 
of the design file, to the printing process and the quality of raw materials.

Custom-made 
Since Custom-made devices are exempted from the CE certification, it is of interest to consider if a 
digitally customizable finger splint can be covered by this term. In general language ‘custom-made’ 
is defined as “Made according to the specifications of an individual purchaser”(8). Starting with this 
definition, a finger splint that adapts to the patients sizes and preferences should indeed be called 
‘custom-made’. The Medical Device Directive describes a ‘custom-made device’ as “any device 
specifically made in accordance with a qualified medical practitioner’s written prescription which gives, 
under his responsibility, specific design characteristics and is intended for the sole use of a particular 
patient”(6). With a side-note that “Mass-produced devices which need to be adapted to meet the specific 
requirements of the medical practitioner or any other professional user are not considered to be custom-
made devices” (6). This division into custom-made or mass-produced devices does not seem sufficient 
anymore regarding the evolution of digital fabrication. In this context a ‘customizable’ finger splint could 
only be covered by this term when made in accordance with a qualified medical practitioner’s personally 
written prescription. 
Furthermore, if patients and healthcare professionals become inventors of their own medical solution, 
consumers could avoid obtaining their devices through the regulated medical device industry or healthcare 
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practitioners.  This raises questions about responsibility and the future of medical device regulation. To 
what extent is regulation necessary and when does the concept personal responsibility come into play?

3.2 Technological challenges

Although the possibilities of digital manufacturing might sound very promising, the quality and controllability 
of additive manufacturing differs from traditional mass-production methods like injection moulding. The 
layer-by-layer building technique of additive manufacturing is the reason for its success, but also its 
weakness. These paragraphs will address the challenges related to on-site additive manufacturing 
orthoses. 

Rethinking mechanical design
Parts manufactured using additive manufacturing technology, are not as strong as traditional manufactured 
parts (9-11). Fracture happens at a much lower load then traditionally manufactured parts. Traditional 
manufacturing methods like injection moulding create solid parts, while the printed structure is porous and 
non-consistent. In addition, additive manufacturing deals with laminate weaknesses as the layer bonding 
is to some extent direction depend. This has to be considered when designing the part and defining 
the build orientation. This so-called anisotropic behaviour, the decreased mechanical strength and the 
porosity are risk factors in the functionality of prostheses and orthoses, where mechanical performance 
is of great importance. Traditional design concepts cannot simply be copied, orthoses-designers are 
challenge to rethink their designs with reference to mechanical performance. 

Prediction and verification of mechanical performance
Finite Element Analysis (FEA) is a method used in the development of orthoses and prostheses design to 
verify mechanical behaviour (12). FEA is a computational method applied on CAD-files. As an alternative 
to practical mechanical testing, it avoids sacrifice of manufactured devices and can be easily applied 
to a wide variety of design variations for design optimisation. In the case of the finger splint it would be 
required to know whether a design can withstand certain forces, and under what forces it would break 
or bend. 
Additive manufacturing complicates the verification of material strength testing and characterization, 
because FEA computational models are based on traditional engineering isotropic materials. 
Notwithstanding the fact that the FEA discipline there are always simplifications and assumptions made. 
The porosity, anisotropic and in-consistent behaviour of parts created with additive manufacturing, 
requires more assumptions increasing the challenge to predict mechanical behaviour. 

Achieve a controlled and consistent output
Adding to this problem, the degree of impact on mechanical performance highly depends on the build 
parameters (9, 13, 14). These parameters are controlled by the user, and limited by the specifications 
and proper maintenance of the machinery. There are many different types of additive manufacturing 
technologies available, not only with a variation in underlying techniques and material but also in brands 
and system capabilities. As a result, the design space is constantly changing when different printers are 

used. Sharing a file that is approved to be safe, does not necessarily result in a safe product. This way of 
manufacturing possesses a significant challenge to achieve a controlled and consistent output. 

Limited material options
The variety of materials suitable for each additive manufacturing technology that are approved for the 
application in medical devices is still limited (7). Due to all of the above limitations, in current medical 
applications it is often seen that not the final product itself is printed. Instead, additive manufacturing is 
widely used as a method for prototyping or for the creation of moulds. In this way the traditional, approved 
materials can still be used in the final product. It could be a challenge to select the material that suits 
the purpose of the respective medical device. Adding to this problem that each individual manufacturer 
should apply the right material and technique that suits the purpose of the design file. 

Time and expertise
Many people without any experience in additive manufacturing live with the illusion that one could have a 
product in hands in no-time. Despite the fact that additive manufacturing enables ‘rapid prototyping’, that 
printing an object of only a few square centimetres still takes up to an hour (15). Furthermore, additive 
manufacturing technologies do not create a fully finished part. Cleaning of additive manufactured parts 
to remove support material is necessary regardless of the technique used. Some techniques require 
additional post-processing steps, like polishing, coating are dying, to achieve a high quality finish. This 
could possess an extra challenge for medical devices when post-processing threatens biocompatible of 
the material. This amount of post-processing required to finish the printed part even further increases time. 
Furthermore, creation of the CAD-file also requires necessary time and modelling expertise. Therefore, 
the entire process from the creation of a CAD-file to a finished product is a challenging, time-intensive 
procedure. 

3.3 Clinical challenges

If patients and healthcare professionals become inventors and/or producers of their own medical solution, 
consumers could not only avoid obtaining their medical devices through medical device industry, but 
also avoid the involvement of a doctor. Involvement of a medical expert in the design process and 
rehabilitation process, may not be underestimated. Fess advocates: 

“Too often illustrations of books, journals, and advertisements serve as the foundation of making splint 
design decisions. Without sound understanding of biomechanical concepts, selection of critical splint 
configuration or splint material may be founded on the prevailing fad rather than on science. First and 
foremost, a splint must work. It must do the job for which it was applied. If it does not, then why use it? 
Splints are not fashion statements, nor are they edifices to their creators. They are serious engineering 
devices that, when used appropriately, can accomplish functions that other traditional modalities cannot 
achieve (16).“

Furthermore, the safety and reliability of a medical device is not solely inherent to its functionality, but also 
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determined by proper use conforming to the patients diagnose. In the case of the finger splint, improper 
rehabilitation could result in a permanently crooked finger: the hand has a complex mechanism and a 
seemingly minor injury can have considerable consequences if not properly treated. Acknowledging the 
fact that the make-culture is spreading in the field of healthcare, the healthcare system is challenged to 
develop tools that bring together DIY healthcare and traditional medical consulting. 

3.4 Conclusions and implications for the design project

It could be concluded that for a successful implementation of the make-culture and digital fabrication 
still many challenges need to be overcome. At first, the current regulation system of medical devices 
does not seem sufficient for this new manufacturing landscape. Revision in the guidance of quality and 
safety of locally fabricated, customized medical devices, seems required. Otherwise it results in complex 
regulatory issues and raises many question about responsibility. Secondly, this quality and safety of 
local fabrication is a challenged by the technological limitations of additive manufacturing regarding 
mechanical performance; predictable results; a controlled and consistent output; material options and 
time and expertise. Furthermore, the safety and reliability of a medical device is also determined by 
proper use, which requires clinical guidance of a medical professional.

Looking back on these findings, it can be concluded that tools are needed to guide how the overall 
process - from creating the digital 3D-model until the use of the finished device - can be designed in 
such a way that it guarantees quality and safety in areas that have been introduced in this chapter. In 
addition, this process should be made more time-efficient and accessible for a wider audience then the 
Maker Movement, so that all stakeholders can benefit from it. Therefore, the purpose of the design project 
should be to provide a DIY finger splint solution with the accessibility, quality and safety of professionally-
graded medical devices. The challenges that have been described in this chapter will be considered 
during the design process. 
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4 Analysis phase
         

In the analysis phase the clinical problems related to finger splinting are inventoried, 
all clinical goals formulated and the design assignment, requirements and functions 
of the solution defined. The analysis phase is composed of the following items: 

4.1  Clinical background
4.2  Current solutions
4.3  Problem definition
4.4  Goals 
4.5  Design assignment 
4.6 List of requirements 
4.7 Function analysis

The clinical background describes the anatomy, kinesiology, pathologies and 
treatments which are of importance in the context of finger splint design. In 
current solutions the strengths and weaknesses of current splinting methods will 
be analysed. From this, the most fundamental problems of the currently available 
splints could be introduced at the problem definition. Subsequently, the goals 
of the solution to this problem will be defined.  All of the above will lead to the 
design assignment, which is the strategy applied to create a suitable solution to the 
problem, and reach the mentioned goals. Subsequently, the list of requirements 
and wishes is composed. This list will be used in the synthesis phases of next 
chapters to test whether the product is actually a well-designed solution. Finally, 
the function analysis will describe the functions of the product in detail.
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4.1 Clinical background

Normal finger position and movement occur from the balanced actions of many important 
structures. Ligaments support the finger joints; muscles hold and move the fingers; tendons 
help control the fine motion of each finger joint. Finger trauma and diseases are common and 
usually heal without significant problems. Some injuries are more serious and may develop 
problems if not treated carefully. This chapter describes the anatomy, kinesiology, pathologies 
and treatments, which are of importance in the context of finger splint design. 

4.1.1 Anatomy

This section describes important anatomical structures related to injuries that require finger splinting. 
After visually introducing the anatomy of the finger, different anatomical characteristics will be further 
described.

Figure 4.1 Anatomy of the finger (A) joints and ligaments (B) tendons

Bones and joints
The hand consists out of nineteen bones that make up the palm and fingers. The palm is formed by 
five metacarpal bones radiating from the wrist. Each finger consists out of three bones: the proximal, 
middle, and distal phalanges. The bones in each finger articulate with one another through joints, called 
interphalangeal joints (IP joints). The joint near the end of the finger is called the distal IP joint (DIP joint). 
The one closest to the knuckle is called the proximal IP joint (PIP joint). The thumb only has a proximal 
and distal phalanges and one IP joint. The knuckle joints are formed by the connections of the phalanges 
to the metacarpals. These joints are called the metacarpophalangeal joints (MCP joints). 

Ligaments
Ligaments provide support and stability for controlling finger movement. Two collateral ligaments on 
either side of the joint connect the bones together. The collateral ligaments prevent abnormal sideways 
bending of the joint. In the PIP joint, the strongest ligament is the volar plate. The volar plate connects the 
proximal phalanx to the middle phalanx on the palm side of the joint. The ligament tightens as the joint is 
straightened and keeps the PIP joint from bending back too far (hyperextending). Finger deformities can 
occur when the volar plate loosens from disease or injury. 

Muscles and tendons
There are two categories of muscles that function within the hand: extrinsic and intrinsic muscles. The 
extrinsic muscles originate in the forearm, while the intrinsic muscles are contained within the hand. The 
intrinsic muscles guide the fine motions of the fingers by getting the fingers positioned and holding them 
steady during hand activities.

Tendons help to control the fine motion of the finger joint. The tendons that allow each finger joint to 
straighten are called the extensor tendons. The extensor tendons of the fingers begin as muscles that arise 
from the backside of the forearm bones. These muscles travel towards the hand, where they eventually 
connect to the extensor tendons before crossing over the back of the wrist joint. As they travel into the 
fingers, the extensor tendons become the extensor  hood. The extensor hood flattens out to cover the top 
of the finger and sends out branches on each side that connect to the bones in the middle and end of 
the finger. The place where the extensor tendon attaches to the middle phalanx is called the central slip. 
When the extensor muscles contract, they pull the extensor tendon and straighten the finger. Problems 
occur when the central slip is damaged, as can happen with a tear.

Nerves
The hand is innervated by three nerves: the radial, medial and ulnar nerves. The radial nerve innervated 
the long wrist extensors and the medial nerve the long flexors. The ulnar nerve innervated the ulnar hand 
flexors, the majority of the intrinsic muscles, and the muscles responsible for finger flexion and extension. 
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4.1.2 Kinesiology

The finger and thumb joints have two degrees of freedom: flexion, extension, abduction and adduction. 
The IP joints only have one degree of freedom: contribution to flexion and extension motion. Hand move-
ments can be categorized into a five basic prehensile and grasp patterns including fingertip prehesion; 
palmer prehension; lateral prehension, cylindrical grasp, spherical grasp, hook grasp, and intrinsic plus 
grasp (figure 4.2). Prehensive movements require less strength then grasp movements. The grasp and 
prehensive patterns are determined by the muscles that are functioning, potential and present deformi-
ties, and how the hand is used (1). The fine motor skills of the hands are very complex and balanced 
system, only a small injury can bring the whole system out of balance.

    

Figure 4.2 Prehensile and grip patterns of the hand (a) fingertip prehension 
(b) Palmer prehension (c) lateral prehension (d) cylindrical grasp (e) spherical 
grasp (10)

4.1.3 Pathologies

Finger trauma or diseases can disturb the balance in these structures, altering normal finger alignment 
and function. Injuries involve fractures or inflammation of the bones, ligaments, tendons or muscles. 
Commonly seen diagnoses that require finger splints are mallet finger; swan-neck deformities; 
boutonniere deformities; lateral deviated fingers and trigger finger. All these DIP and PIP joint pathologies 
are described in table 1 on the next page, in terms of the affected parts; causes; symptoms; mechanism 
and symptoms; splinting treatment and consequences. 

In the design assignment later in this chapter, the most common pathology will be selected to create a 
solution for.  After a proven success, this design could simply be adjusted to the remaining pathologies 
without the need to go through the whole design methodology from start. With this in mind, the components 
of the analysis phase are applicable for all DIP and PIP joint pathologies. 

Figure 4.3 Finger pathologies requiring splinting (from http://www.blog.ohmyarthritis.com)  
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Table 1 Description of DIP and PIP joint pathologies treated with splinting (1-4)

4.2  Current solutions

This paragraph first addresses the pros and cons of the different types of splint methods.  This 
will be supported through quotations of professionals that have been interviewed. This was done 
to get a clear understanding of the needs that are still not met by the current splinting methods. 
The problem definition will follow from the limitations found. Second, this paragraphs addresses 
the principles of successful splinting treatment. These findings will be included in the list of 
requirements and wishes. 

4.2.1 Splinting methods

The matter of hand splinting is the task and responsibility of hand therapists. Hand therapist are 
experienced in making the right decisions for the splint design and function. For instance about the angle 
of immobilization, which is patient and treatment specific. Clear instructions on the use and maintenance 
need to be provided to the patient, and follow up is needed to check compliance. 

Finger splints come in a varied assortment of configurations and sizes to accomplish many different 
functions for support and immobilization. Splints can be categorized as static and dynamic splints: static 
splints are used to rest tissue, provide external support and gain or maintain motion; dynamic splints 
provide a constant force to the joints, by a rubber band or wire spring coil, to actively improve motion. 
Figure 5 to 9 provide an overview of different splint designs for each of the earlier described pathologies. 
The hand therapist has the option to use a prefabricated splint, make a thermoplastic custom splint or 
order a professionally developed personalized splint for a more permanent purpose. These three option 
will be described below. 

Prefabricated splints
Prefabricated splints are commercially available, and offer some advantages over custom-made 
thermoplastic splints: they are more durable, less bulky and often more aesthetically pleasing. 
Prefabricated splints are available in standard convection sizes. 

	 “The	standard	convection-splints,	usually	do	not	fit.	In	that	case,	we	make		 	
	 ourselves	a		custom	one”

- Hand therapist 1, Zaans Medical Center

	 	“We	have	a	huge	box	of	this	type	of	mallet	splints	but	never	use	them,	
	 because	they	never	fit	properly.	Alternatively,	we	use	custom	made	splints”

- Hand therapist 2, Zaans Medical Center

An example of a novel commercial splint design is the oval8 splint, which is low-profile multifunction 
and relatively low cost (€18,95 for a set of three sizes). It is promoted that the oval8 can be worn for all 
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5 pathologies described in table 1. The oval 8 is available in 14 different sizes, and can be adjusted 
by moulding. However, they do not always fit; moulding doesn’t work well; they are not really strong or 
durable and only available in 1 colour. 

	 	“Changing	the	shape	of	the	oval8	splint	by	heating	does	not	work	well,	fiddling		 	
	 with	a	patch	to	create	a	better	fit	does	not	work	properly	either”

- Hand therapist 1, Zaans Medical Center
 
	 “Sometimes	we	placed	a	little	extra	fabric	inside	the	mallet	splint,	to	put	the		 	
	 finger	slightly	in	hyper	extension.	But	after	a	few	weeks	people	came	back		 	
	 and	then	the	added	fabric	was	dirty	and	not	in	the	right	place	anymore.	So		 	
	 at	some	point	we	said:	that	no	longer	works”

-Hand therapist 2, Zaans Medical Center

Custom made splints
Custom splints are made using low temperature thermoplastic material and, if necessary, fabric straps 
for fixation. The material is cut to size and moulded to fit by heating with water or a fohn. Advantages 
of custom made splints is that they are patient specific and low-cost.  But as a disadvantage they are 
time-consuming; not really durable; have a bad quality finish (i.e. sharp edges) ; are bulky and often non-
aesthetically pleasing.

	 	“I	am	half	an	hour	to	one	hour	busy	to	make	one	splint,	and	find	it	difficult	to		 	
	 make		a	good	quality	finish”

-Hand therapist 1, Zaans Medical Center
 
	 “Properly	finishing	the	thermoplastic	requires	considerable	effort”

-Hand therapist 2, Zaans Medical Center

Permanent splints
In the case of rheumatoid arthritis one could need a permanent splint. If the temporarily thermoplastic splint 
design complies an orthopaedic instrument maker can order a professionally developed personalized 
splint, like a silverring-splint.  Permanent splints are made at request of a rehabilitation doctor to make sure 
the expensive solution is functional. The advantages of these silverring splints are: aesthetically pleasing 
for most patients; low-profile; long-lasting; custom fit and has possibilities for personal adaptions. But 
they happen to be very expensive (€80 - €160); the material is really soft; and it is a fiddly procedure to 
find the right measure.

	 “There	are	patients	who	say	about	the	silvering-splint:	that	is	nothing	for	me”	
-Hand therapist 1, Zaans Medical Center

	 	“The	silver	is	such	a	soft	material	that	the	forced	position	is	undone	again”
-Hand therapist 2, Zaans Medical Center

	 “A	silverring-splint	on	the	DIP	joint	easily	falls	off”	
 - Professor in rehabilitation medicine, University of Groningen

Figure 4.4 Fixation splints for mallet finger: a variation in design but all with the same principle to maintain full 
extension or slight hyperextension at the DIP joint. (a) oval8 (b) custom ordered silverring-splint (c,d,e) prefabricated 
splints (f) custom
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Figure 4.5 Dorsal blocking splints for Swan-neck or hyperextension injury: a variation in design but all with the 
same principle to  positions the PIP joint in slight flexion while limiting full PIP joint extension, but also allowing 
for full PIP flexion. (a) oval 8 (b) prefabricated splint (c) silvering model (d) custom-made (d) custom made (e) 
prefabricated dynamic splint

Figure 4.6  Finger splints for Boutonniere Deformity/ Jammed finger: a variation in design but all with the same 
principle to prevent contraction of the PIP joint (a) oval8 (b) silverring-splint (c) silverring-splint to prevent flexion 
greater than 25 degrees (d) prefabricated splint (e) custom made  (f) dynamic model

4.2.2 Principles of successful splinting treatment

Understanding the biomechanical engineering principles are of great importance for successful 
splinting techniques. If misused, for instance due to a lack of understanding, splints can be inefficient or 
create additional problems (6). Manipulation of Biomechanics increases splint efficiency and improves 
splint durability while decreasing costs and frustration (6). An accurate fit is not only accomplished by 
dimensional properties but also by well distributed pressure. Correct biomechanics of a splint design 
results in an optimal fit and reduces risks of skin irritation and pressure areas, which ultimately lead to 
client comfort, compliance, and function (4). An extensive analysation of the biomechanics of splinting is 
provided in Annex 4.1a

Furthermore, successful splinting is dependent upon the patient wearing the splint. Consideration of 
factors unique to the patient like their attitudes lifestyle and living and working environment, will increase 
the potential for an optimal outcome (5). All these factors should be considered in the design process of 
the finger splint. A more detailed description can be found in Annex 4.1b

Figure 4.7  Finger splints for lateral deviated fingers: a variation in design but all with the same principle to 
straighten the joint by reducing DIP and PIP joint deviation. (a) oval 8 (b,c) silverring-splint

Figure 4.8 Finger splints for trigger finger a variation in design but all with the same principle to rest the finger 
(block it from triggering) by limited MCP or DIP/PIP joint flexion. (a) oval8 (b) silverring-splint (c, d) custom-made 
thermoplastic
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4.3 Problem definition

During the problem definition, the most fundamental problem of the currently available splints 
will be introduced. In order to get an improved understanding of the problem, all persons related 
to the given problem were first inventoried through a stakeholder analysis. Subsequently the 
most fundamental problem will be formulated by means of a cause-effect order. 

4.3.1 Stakeholder analysis

Before defining the most problems, all persons that are involved were considered. These people are 
called stakeholders. Not only the patient with an injured finger is involved, but also his boss, his co-
workers, his family and the society in general. Another viewpoint is to realise that a medical product will 
be selected by the physician, financed by the health insurance, bought by the healthcare provider, used 
by the patient, and approved by the notified body. All those people were considered, because they all 
will face related problems. To have a complete overview these problems were inventoried as well. The 
scheme of the stakeholders, their characteristics; expectations; and potentials and deficiencies are given 
in table 2. From the stakeholder analysis implications and conclusions for the solution will follow, as a 
contribution to the design assignment and list of requirements and wishes later in this chapter. 

Table 2 Stakeholder analysis for a finger splinting
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4.3.2 Fundamental problem

All problems related to the limitations of the currently available splinting methods, were linked by placing 
them in a cause-effect order. In this way the most fundamental problems were found. When these most 
fundamental problems are solved, all related problems are solved. From figure 4.9 it can be seen that 
the most fundamental problem is that current methods to heal finger deformities cannot provide a good 
quality, aesthetic and cost-effective custom-fit solution. 

 

4.4 Goals

First, there is the primary goal of the project: increase the patient’s quality of life and improve efficiency 
and innovation of the healthcare system. If this bottom line is not reached – the product cannot be 
regarded as successful. Then, we have the fundamental goal of the product solution itself. 

Figure 4.9 (a) cause-effect diagram of all problems (b) Cause-effect diagram of all goals

Subsequently, for each of the stated problems in the cause-effect order a goal could be formulated. Then 
the most fundamental goal has been selected. If the most fundamental goal can be realised, all other 
goals will be realised automatically as well. In figure 4.9 can be seen that the most fundamental goal of 
the product is to stabilize finger deformities with a good quality, aesthetic, cost-effective and fast custom-
fit solution. 

 
4.5 Design assignment

This section describes the design assignment, which is the strategy that will be applied to realize 
the above mentioned goals. 

The design assignment is to realize a mechanical device that cures minimally one of the earlier described 
PIP and DIP joint deformities, that allows customization for a perfect ergonomic fit. The device should be 
better than current solutions in providing an ergonomic fit considering aesthetics; quality; time-efficiency 
and cost-effectiveness. The hereby imposed design and manufacturing method of the device is 
3D-modelling and additive manufacturing (3D-printing). The selection of the most suitable manufacturing 
method, which covers the material and printer selection, will be extensively researched. The design 
process concerns redesigning an existing solution, adapted to the alternative design and manufacturing 
technique. A final prototype will be printed and tested to prove quality and safety of the design and 
manufacturing method.

Through the following paragraph, the design assignment will be further demarcated. This will be done by 
looking at different elements relevant for focus and limitation. 

4.5.1 Focus and limitation

The elements relevant for focus and limited are the pathology to solve; the strategy to obtain the 3D 
model; the measurement method to obtain the finger dimensions; the definition of he maker and the 
print locations that may be considered for ‘local’ manufacturing. The different strategies that could be 
selected, are depicted in the table below.
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Pathology
Since the design assignment functions as a proof of concept, the solution must solve at least one of the 
relevant pathologies that were described in the clinical background. Because splinting for swan-neck 
deformity is the most common, this is the first to be developed. After a possible proven success in this 
project, a database can be developed with splints for the other relevant pathologies. 

3D modelling
Most hand therapists and patients lack in 3D modelling expertise and technical knowledge of 3D printing. 
In addition, they could be conservative towards learning new techniques are simply don’t have the 
time. Using parametric modelling, both problems can be tackled. Since a parametric 3D-model can 
be customized without the need for 3D-modeling skills. The potential of parametric modelling will be 
further discussed in chapter X. The software used for parametric modelling is the Grasshopper Plug-in 
for Rhinoceros (CAD software). Other software possibilities will not be further explored.

Measurement method
The method to obtain the finger dimensions will be an automated calliper. Compared to a 3D scan or 
photo capture, the output of an (automated) calliper can be used as a direct input for the parametric 
model. The obtained data is less detailed, but the few data point seem to be sufficient to realize a perfect 
ergonomic fit of a finger splint. Moreover, the method is inexpensive and very accessible. If this method 
does not happen to be sufficient, alternative methods should be explored.
The maker

Table 3 : Strategies for the design assignment

The maker is defined as the person measuring and implementing the input parameters to create the 
‘custom-made’ splint design. The patient and/or the hand therapist should both be considered as the 
maker. However, role of the importance of the hand therapist in this process requires further research.  

Location of manufacturing
The location considered as most local, is preferred. But the location of manufacturing is inherent to the 
manufacturing technique that will be selected. Therefore, the location possibilities need to be looked into 
when researching the manufacturing technique.

4.6  List of requirements and wishes

To test whether at the end of a design phase or at the end of the entire process the product is 
actually a good solution to the problem, a checklist is used: the list of requirements and wishes.  
This list of requirements is based upon the literature findings as described in the previous 
chapters, and the medical background of this chapter; the stakeholder analysis (S); interviews 
with experts in the field of hand splinting (I); and the essential requirements for Class I Medical 
Devices as described in the European Medical Device Directive 93/42/EEC (R). The letter at the 
end of the requirements indicates wherefrom the requirement is derived, S for stakeholders,. The 
list is used to accept or reject a solution, failing one of the requirements means the product fails. 
The concepts that pass the list of requirements can be ranked by the wishes. The more wishes it 
fulfils and the better it fulfils them, the better the product is. The complete list is presented below. 

1. User requirements
 1. The user should be able to wear the device during daily activities without any negative 
  interference (i.e. showering, sleeping, cooking, clothing) (S)
 2. The device can be put on and off with one hand and without pain or causing harm (R)
 3. The device enables normal hand movements (prehensile and grasp patterns including   
  fingertip prehesion; palmer prehension; lateral prehension, cylindrical grasp, spherical   
  grasp, hook grasp, and intrinsic plus grasp) (A)

2. Ergonomic requirements
The device should..
 1. align the finger in a natural, relaxed angle (I)
 2. immobilize the particular joint, while involving other joints as few as possible (A)
 3. not restrict movement of other fingers (S)
 4. not slip off or rotate around the finger (I)
 5. provide a personalized ergonomic fit for each individual user (I)
 6. be comfortable to wear (S)
 7. enable a patient specific angle of immobilization (I)
 8. enable a patient specific length and volume (I)
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 9. keep the knuckle, which is very sensitive for pressure point, free as far as possible (I)
 10. be thin enough so that several splints can be worn at the same hand, without causing   
  pressure points (I)

3. Safety requirements
The device should..
 1. well serve the purpose of the particular trauma (I)
 2. prevent soft tissue stress by implementing (A):
  - Round edges
  - The MA principle: maximize splinting arm length segment 
  - Increase area of skin contact at pressure points
 3. tolerate temperatures of at least 50 degrees Celsius (R)
 4. not break when falling or hitting (S)
 5. be well ventilating to the skin (I)
 6. not initiate sweating of the skin (I)
 7. allow air circulation to the injured part (A)
 8. not restrict blood flow in the finger (R)
 9. minimize risk on window oedema (A)
 10. not cause joint stiffness or permanent deformation (due to incorrect force application) (A)
 11. The device should withstand the system of forces resulting from the biomechanical   
  analysis (Annex 4.2) (A)

4. Maintenance requirements
The device should.. 
 1. be cleaned with water and soap within 5 minutes (S)
 2. have a lifetime of minimally 3 months (A)
 3. not allow penetration of contaminants or water (S)
 4. be easy to replace by the patient himself in case of failure (within a few days for less than  
  €20,- manufacturing costs (A)

5. Material and manufacturing requirements (materialisation)
The material and manufacturing requirements are divided into 5 criteria: Material safety; quality and 
appearance; safety and reliability; mechanical performance; and ease of implementation. These criteria 
will be used for the materialisation selection in chapter 5.

 Material safety requirement 
1. The material should be non-irritating to the skin (biocompatible approved according to the ISO   
 10993-1)(R)
2. Approved for food contact in compliance with the EU Plastics Directive 2002/72/EC. (R)

 Quality and appearance requirements
3. Complexity:  The product should be printed as one part and the manufacturing method should   
 allow for a complex shape with large overhangs and thin sections that may not have a    
 stable standing position to be printed on. (B)
4. Surface finish:  The product should have a smooth finish and may not contain any sharp   
 corners. (B)
5. Resolution: The resolution should be high enough to enable display of tiny details for a more   
 aesthetic design or personalisation details like a text or figure. (B)
6. Water tightness and contamination: The product should be resistant to water and    
 contaminations (S)
7. Post-processing: Post-processing steps should compensate the above mentioned requirement  
 if not reached (requirement), but should be minimized as much as possible(B)
8. Colour: It should be possible to change colours to one’s individual wishes (S)

 Mechanical requirements
9. Strength and rigidity: The mechanical properties must provide sufficient strength and rigidity  
 to resist the applied forces (as defined in Chapter X) under all conditions, without rupture or   
 deformation. (B)
10. Isotropy: The manufacturing method should maximize strength in all directions as much as   
 possible. (B)
11. Failure risk: Possible mistakes made in the manufacturing process may not lead to mechanical   
 failure, or should be detected in time. (R)

 Implementation requirements
12.  Accessibility: an autonomous patient and hand therapist both should have easy access to the   
 material and manufacturing method.(B)
13.  Location: It is preferred that the manufacturing method allows manufacturing at location, if not   
 then a 3D printing service also complies. (B)
14. Time-effectiveness: the fabrication process should cost the maker not more than 10 minutes.   
 And printing and/or delivery time of the splint should be as low as possible. (S)
15. Costs-effectiveness: materialisation costs should be as low as possible, preferable below €20,-  
 per splint (€30,- including development costs) (A)

 Safety and reliability requirements
16. Accuracy: the printer should be properly calibrated to achieve dimensions equal to the input   
 dimensions. (R)
17. Reproducibility: The device manufacturing process should give equal results when repeated at  
 different locations by different makers. (R)
18. Traceability: In case the product results in complications inherent to a manufacturing failure, the  
 cause of the failure should be traceable. (R)
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6. Whishes
 1. It should be possible to change colours, material and design to one’s individual wishes (A)
 2. The product should be as lightweight as possible (S)
 3. The product should be aesthetically pleasing the user’s personal taste (S)
 4. The materials should be biodegradable (B)
 5. The device should be as cheap as possible (A)

4.7  Function analysis

The function analysis will describe the function of the product in more detail. As mentioned in 
the clinical background, the general function of finger splints is to improve joint kinematics by 
immobilize the joint in a certain position. More specifically, the motion around the PIP and/or DIP 
joint must be restricted in one or two direction. First, all sub-function will be set out for each of the 
relevant pathologies. Secondly a function analysis will be performed, to be used later on during 
the design phase as method to stimulate creativity.

4.7.1  Sub-functions

For each relevant pathology, the following sub-functions can be considered:

Swan neck deformity:
• Prevent hyperextension PIP joint
• Allow flexion PIP joint

Mallet Finger:
• Hold DIP joint in full extension
• Prevent DIP joint flexion

Trigger Finger:
• Rest finger (block from triggering)
• Limit DIP/PIP joint flexion

Boutonniere/Jammed Finger:
• Prevent DIP joint hyperextension
• Allow DIP joint flexion

Lateral deviated Fingers:
• Align PIP/DIP joint
• Prevent deviation PIP/DIP joint 

4.7.2 The function analysis approach

In order to distract from reality and allow the creation of many solutions without being limited by thoughts 
on existing ideas, this paragraph focusses on describing the design assignment in very abstract words. 
This approach enables the designer to come up with richer solutions when used during the design phase 
(Verkerke & van der Houwe).

To describe the function, only two words could be used. The first word was selected out of: Material, 
Energy, Information. The second word was selected out of: transportation, transformation, storage, 
separation/connection, combination.

Table 4: Fundamental functions of the function analysis approach
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The general function of the finger splint, to restrict movement around the PIP/DIP joint in one or two 
directions, can then be described as Material Connection. Then the sub-functions can be described as 
following:

1. Fixation to the finger: Material transport
2. Align joint: Material transport
3. Prevent hyperextension PIP/DIP joint: Energy storage
4. Prevent flexion PIP/DIP joint: Energy storage
5. Allow flexion DIP/PIP joint: Material transport
6. Prevent deviation DIP/PIP joint: Energy storage
7. Positioning the splint: Information transport

All possible sub-functions are ordered in the scheme in figure 4.10. From this analytical standpoint, boxes 
could be moved around to mix functions.

 

Figure 4.10  Function scheme of the finger splint functions
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5 Synthesis phase I
         Materialisation

In this chapter five materialisation concepts are created, extensively analysed, and 
finally the best is selected. The material and manufacturing method are grouped 
under the single term; materialisation. The chapter is composed of the following 
items:

5.1 Materialisation concepts
5.2 Quality and appearance
5.3 Mechanical performance
5.4 Ease of implementation
5.5 Safety and reliability
5.6 Concept selection

First the materialisation concepts will be created and explained regarding the 
underlying technique of each manufacturing method. All materialisation concepts 
are analysed concerning the following criteria: the quality of the printed object; 
mechanical performance; the ease of implementation; safety and reliability. These 
criteria refer to specific materialisation requirements, defined in the Analysis phase. 
The requirements are used as a checklist to see in what extend each concept 
would be a good solution to the problem. Paragraphs 2-5 provide the results of 
this checklist and a ranking of all concepts per criteria. In the concept selection the 
best overall performer will be selected. This material and manufacturing method 
will be embraced for further product development.
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5.1 Materialisation concepts

Many types of 3D print technologies exist. Each type is characterised by different strengths and 
weaknesses. It depends on the product requirements which option is best suitable for the job. Not every 
material on each printer’s list is suitable for medical purpose. Starting from the materials that comply 
with the material requirement be skin and food safe (requirement 5.1), five materialisation concepts were 
created. The materialisation concepts are shown in table 5.1. It should be noted that concept number five 
does not involve a 3D printing technology as implied in the design assignment. The argument to create 
this alternative concept was to double check if 3D printing truly would be the best solution to the problem. 
How this 2D technique can be of use for creating a 3D object, will be explained later. 

Table 5.2 provides an overview of the material properties that are of importance to describe the mechanical 
behaviour of the material options. Tensile strength is the stress required to initiate deformation. The Young’s 
modules is a mechanical property that defines the relation between stress (force per unit area) and strain 
(proportional deformation). Values are obtained from the material data sheet by the manufacturer (1-4), 
who all tend to provide the properties based on printed test samples. Next, the underlying technique of 
each manufacturing method will be described.

Table 5.1 Overview of materialisation concepts

Table 5.2: Tensile strength and Young’s modulus of the material options (1-4).
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1. Fused Deposition Modelling (FDM)
 Fused Deposition Modelling (FDM) works by material being melted 
and extruded through a nozzle to 3D print a cross section of an 
object each layer at a time. The bed lowers for each new layer and 
repeats until the objects is completed. Layer height determines 
the quality of the print. For object with overhanging areas, support 
structures need to be printed and manually removed afterwards. 
Higher range FDM 3D printers have multiple nozzles that can print 
different colours and print support structures for overhanging areas 
of a complex 3D print. 

2. Selective Laser Sintering (SLS)
Selective Laser Sintering is a 3D printing technology that uses 
a powder bed fusion process to build 3D parts. Sintering is the 
process of compacting and forming a solid mass of material by heat 
without melting it to the point of liquefaction. A thin layer of polymer 
powder is selectively sintered in the shape of the 2D cross-section 
using a powerful laser beam. After each layer, the build platform 
descends one layer depth and is recoated with a fresh layer of 
powder. The laser scanner process simultaneously generates the 
current layer and joints it to the previous layer, creating a solid part. 
Iterating this process for each cross-section of the object results in 
the complete object. As the finished object is buried in a container 
of the un-sintered powder, no support structures are required. This 
allows the construction of complex structures and interlocking 
parts. 

3. Stereo Lithography (SLA)
The process of the SLA technology is similar to SLS but uses a 
near-UV laser beam focussed on a thin layer of liquid photopolymer 
resin. The photosensitive resin reacts solidifying forming the 2D 
cross-section of the object. In contrast to SLS support structures 
are required, and the in liquid resin soaked object needs to be 
cleaned. The removal of support structures often leads to scars on 
the object’s surface. 

4. PolyJet (PJ)
Similar to SLA, a PolyJet printer uses a UV light to crosslink a 
photopolymer. But instead of scanning laser to cure layers, a 
printer head jets tiny droplets of the photopolymer in the shape 
of the cross-section layer. After which a UV lamp, attached to the 
printer head, 

Figure 5.1 Fused Deposition Modelling

Figure 5.2 Selective Laser Sintering

Figure 5.3 Stereo Lithography
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Crosslinks the polymer. The build platform lowers before each new 
layer is deposited directly onto the new layer. These steps are 
iterated until the 3D part is completely finished. 

5. 2D Laser cutter
The laser cutter is a machine that uses a laser to cut materials such 
as chip board, matte board, felt, wood, and acrylic up to 3/8” (1 cm) 
thickness. The laser cutter is often bundled with a driver software 
which interprets vector drawings produced by any number of CAD 
software platforms. The laser cutter is able to modulate the speed 
of the laser head, as well as the intensity and resolution of the laser 
beam, and as such is able both cut and score material, as well as 
approximate raster graphics. Objects cut out of materials can be 
used in the fabrication of physical models, which will only require 
the assembly of the flat parts.

Using a 2D laser cutter is precise method of cutting a pattern from a 
sheet of material using a CAD file to guide it. A laser beam cuts the 
material by melting, burning and vaporizing the material. A fine level 
of detail on a wide variety of materials can be achieved including 
the common used medical thermoplastic, are the biodegradable 
Woodcast®, used for splinting.

This method can be used to cut out a parametric 2D splint model, 
instead of manual drawing and cutting, after which the traditional 
process of fitting by moulding and heating is followed using a laser 
cutter reduces time and overcomes the difficulties of the current 
manual method to make a custom splint. Instead of using pre-
perforated sheets, more aesthetically pleasing patterns can be 
made with a more detail and a more comfortable and clean finish. 

5.2 Quality and appearance

In this section the materialisation concepts are ranked with reference 
to the quality and appearance requirements for materialisation. 
These are requirement 5.2 – 5.7 of the list of requirements and wishes, 
defined in the Analysis phase (chapter 4). To each requirement a 
weight is assigned, saying that it is very, or less, important, than 
another. Secondly, each concept is given a score per requirement 
from 0 to 10 for bad to good. The total concept score of all quality 
and appearance requirements is calculated as seen on the left.

Figure 5.4 2D Laser cutting

Results
An overview of the results is shown in the figure and table below. The descriptions of the requirement 
fulfilment as an argument for the given score, can be found in Annex 5.1. 

Conclusion
It can be concluded that Selective Sintered Nylon is the best option to create a finger splint with a good 
quality and appearance. It is excellent in printing complex objects with overhangs and small details, 
it’s surface has a good look and feel and there are many colour options. As a disadvantage the porous 
surface is not water-tight and easily becomes dirty and contaminated, but this can be overcome with 
some additional post-processing steps. A more smooth and shiny surface can be achieve by polishing, 
and different coatings could be applied to realize a water-tight and clean final product. The surface of 
the printed object is a SLA or PJ both would be more suitable if superior quality surface finish is required 
is or parts need to be transparent, unfortunately the medical resins for these printers are not as limited in 
colour as their commercial options.

5.3 Mechanical performance

In this section the materialisation concepts are ranked with reference to the mechanical requirements for 
materialisation. These are requirement 5.8 – 5.10 of the list of requirements and wishes, defined in the 
Analysis phase (chapter 4). The same ranking method as described in paragraph 5.2 is applied. 

Results
An overview of the results is shown in the figure 5.6 (on the next page) The descriptions of the requirement 
fulfilment as an argument for the given score, can be found in Annex 5.2. 

Figure 5.5 Quality and appearance results
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Conclusion
Due to the it’s isotropy and relative elasticity Selective Sintered Nylon is the best all-rounder that offers 
durability, strength and wear resistance. Second, SLS printers are highly professional machines controlled 
by experts, limiting the risk on mechanical failure due to manufacturing mistakes. With its high strength 
FDM would be a good option, but due to a low isotropy only when strength in one direction is required. 
However, the mechanical strength of FDM printed parts highly depend on the build parameters controlled 
by the user and limited by the specifications and proper maintenance of the printer. This increases the 
risk on mechanical failure. SLA and PJ both are less suitable then SLS, because photo polymeric resins 
tend to be very rigid and thus brittle. Under load rigid resins almost do not deform until they a sudden 
violent fracture into multiple piece.

5.4 Ease of implementation

In this section the materialisation concepts are ranked with reference to the implementation requirements 
for materialisation. These are requirement 5.11 – 5.14 of the list of requirements and wishes, defined in 
the Analysis phase (chapter 4). The same ranking method as described in paragraph 5.2 is applied. 

Results
An overview of the results is shown in figure 5.7. The descriptions of the requirement fulfilment as an 
argument for the given score, can be found in Annex 5.3. 

Figure 5.6 Mechanical performance results

Figure 5.7 Ease of implementation results

Conclusion
With FDM being the most popular, affordable and simple technique it is the most easy to implement. 
An independent patient could easily purchase an FDM printer at home or in a makerspace, and for a 
healthcare facility is would be an affordable investment. In addition, an FDM printer could be used at 
remote locations. The use of both SLS and PJ depend on a 3D printing service, since these machines are 
too expensive and inefficient to have in an makerspace or healthcare facility. 

Despite all these advantages, the DIY spirit accompanied with FDM is not time-efficient, it can take up 
to a few hours to finish the product. Although it requires a few days delivery time, it would be more time-
efficient to order the splint at a company with a 3D-print service. Probably also delivering a better quality 
result. 
 

5.5  Safety and reliability 

In this section the materialisation concepts are ranked with reference to the safety and reliability 
requirements for materialisation. These are requirement 5.11 – 5.14 of the list of requirements and wishes, 
defined in the Analysis phase (chapter 4). The same ranking method as described in paragraph 5.2 is 
applied. 

Results
An overview of the results is shown in figure 5.8. The descriptions of the requirement fulfilment as an 
argument for the given score, can be found in Annex 5.4. 

Conclusion
Selective Laser Sintering is currently fare-out the most safe and reliable technique to use for the 
fabrication of medical devices. It is the only technique offered by specialized medical printing services 
that manufacturing according to the medical printing standard (ISO 13485). In this way very accurate 
dimensions and reproducible results can be achieved, and in case of failure every product is traceable. 
Considering regulatory issues, SLS would therefore be a very good option. In the case of FDM or LC the 

Figure 5.8 Safety and reliability results
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manufacturing process is the responsibility of independent makers at dispersed locations and quality 
results highly vary with this, traceability and reproducibility then become uncontrollable.

5.6 Materialisation concept selection

In this section all materialisation concepts are ranked according to their overall performance, and the 
best selected. To each criteria a weight is assigned, saying that it is very, or less, important, than another. 
The score pre criteria are the aforementioned results. The score for the overall performance can then be 
calculated as following:

Results
An overview of the results is shown in figure 5.9.

 

Materialisation conclusion
It may be clear that Selective Laser Sintered Nylon is the best overall performer in providing an high 
quality; low cost; mechanically functioning; safe and reliable finger splint. The only drawback is that use 
of this technology depends on a 3D printing service requiring a few days waiting time to have the product 
in hands. Purchasing an SLS printer at location is not (yet) realistic due to the high investment and the 
fact that the technique is not suitable to print one single product. Since one can purchase a finger splint 
from the comfort of his own home when using a 3D-printing service, this may still be considered as ‘local’ 
fabrication. For this project, the SLS option will be embraced for further product development.

Figure 5.9 Overall performance results

Materialisation discussion
Given that the parametric finger splint design application is a standalone concept, the materialisation 
selection could be seen as an advice rather than an obligation. SLS is the best overall performer 
considering the requirements and their importance set for this project, but situations may occur where 
these requirements and their importance differ. 

If a more DIY approach, FDM is the best option to enable a patient or hand therapist to really make the 
finger splint himself at a desired or remote location. However, this option should only be considered if 
this requirement is of such great importance that it compensates for the drastically decreased quality, 
safety and reliability. When a superior quality surface finish is required is required or parts need to be 
transparent, then an SLA print will be the way to go while taking into consideration the high costs.
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6 Synthesis phase II
         Parametic Design

In this phase three design concepts are created, extensively analysed, and finally 
the best selected. This chapter is composed of the following items:

6.1 Method
6.2 Results
6.3 Concept selection
  
The method describes the design approach to address the following technological 
challenges revealed in the background research: allow for quick and easy 
customization; rethink mechanical design; and verify mechanical performance. 
In results the three parametric design concepts are provided including an 
analyzation of their mechanical performance. Finally, the concepts are prototyped 
and the design that best fulfils the product requirements will be selected for further 
development in Synthesis III.
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6.1  Method

The finger splint design creation, verification and validation includes the following steps (Fig. 6.1). 
1) Parametric design model development in Grasshopper, 2) FEM analysis of the splint designs 
using related loading conditions resulting from the biomechanical analysis, 3) qualification of 
the printed prototypes, and 5) an experimental validation of the mechanical performance. This 
last step will be further addressed in Synthesis III, step 1-3 will be performed in this phase as 
described in the following. 

6.1.1  Parametric design

Unlike most CAD-software, parametric design software allows one to change the virtual 3D-model after 
the design is completed, so that it can be adjusted dimensions, volume or for instance surface patterns.  
The software used for parametric modelling is the Grasshopper Plug-in for Rhinoceros.  Grasshopper is a 
graphical algorithm editor tightly integrated with Rhinoceros’ 3D-modeling tools. It enables manipulation 
of the relationship between elements to change the design of complex geometries and structures. The 
final design is a formula, based on a set of data. Some data is fixed (the design choices made by the 
designer for functionality reasons for example), some data is open (the parameters that can still be 
changed).

Parametric design will be used to provide a basic design for the finger splint that can easily be adjusted 
to patient ergonomic dimensions. In this study the following parameters will be open for the user’s input: 
finger length; front- ;middle- ; back-diameter; and the angle of immobilization. Grasshopper receives 
this data from an external text file, which is updated in real-time.  Each script of the parametric concepts 
visualisation in the Results section, start with the grasshopper script in the figure 6.2.

Figure 6.2 Parametric input in the design script (Grasshopper)
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6.1.2 Design verification (FEM)

The Finite Element Method (FEM) is a computational method used to predict the mechanical response of 
the engineered component under the predicted loading conditions, prior to manufacturing. Prediction of 
mechanical performance is necessary because it must be proven that the splint will not break or bend under 
the specified force requirement. Traditionally, FEM analysis is based on the assumption that materials 
are uniform homogeneous solids. While 3D-printed objects are not homogeneous but anisotropic, as 
mentioned in chapter 2. However, selective laser sintered parts could nearly be considered isotropic. 
Therefore, the sufficiency of this method will first be further explained. 

In different studies the Finite Element Method was successfully applied in the framework of orthotic design 
using Selective Sintered Nylon (1,2). In these studies the Selective Laser Sintered Nylon was implemented 
in the finite element models as an isotropic material using the published mechanical properties provided 
by the data-sheet. While more recent studies revealed a discrepancy between measured mechanical 
properties and the data provided by the manufacturer, that mostly refer to isotropic materials (1). To 
account for such issues, the data-sheet for SLS nylon refers to the anisotropic mechanical properties of 
printed test samples instead of the raw material (3). 

From this it was concluded that the Finite Element Method can be used as a tool to predict and optimize 
the parametric finger splint design. The CAD-files created in Rhinoceros are exported as step.-files to 
perform the studies in the Solid Works Simulation module. The predictions rely on the geometry, the 
implementation of loading conditions and the material characteristics. These subjects will be further 
addressed below.

Design geometry
Rethinking the mechanical design started with analysing the two traditional three-point finger splint 
configurations: the ring-based and oval-8 design (figure 6.3).  The FE-analysis of these basic models, 
were used to predict the sufficiency of these design to be manufactured using SLS nylon.  Based on the 
revealed strengths and/or weaknesses of , three new designs were created and analysed to achieve a 
sufficient geometry (change width/thickness). 

Loading and restraints
First an extensive biomechanical analysis of the finger splint was performed to predict the system of 
forces acting on the finger splint. This biomechanical analysis is attached in Annex4.2. In SolidWorks 
Simulation a static study was performed for a variation of models by implementing the predicted loading 
conditions. A uniform, directional applied force of 15.6 N (purple arrows) was applied at the proximal 
and distal components of the splint, while the middle part was fixed to restrict it from moving (Fig. 6.4).  
Calculations were performed using the solid, standard mesh type (Fig. 6.5). 
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Figure 6.3 The basic 3-point-splint configurations a) oval-8 design  b) ring-
model

Figure 6. 4 Loading conditions Figure 6.5 Mesh generation
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Material characteristics
The Selective Sintered Nylon was implemented in the Finite Element models as a Linear Elastic Isotropic 
material with the necessary material properties shown in the table below. These values refer to mechanical 
properties in the Z-direction of the printed object, which is the weakest direction. This isotropic approach 
was considered to be sure that the positioning of the model during the build process has no negative 
influence on the mechanical performance.

For a proper interpretation of the result the stress/strain behaviour of SLS nylon (Fig. 6.7) was considered 
in comparison to general elastic behaviour (Fig. 6.6). The stress/strain curve displays the amount of 
deformation (strain) at intervals of tensile loading (stress). In the linear region elastic deformation occurs, 
allowing an object to recover its original shape and size when unloaded. In the non-linear, so-called 
plastic region (beyond yield strength) permanent deformation occurs. While the ultimate strength is 
the maximal stress a material can withstand before fracture. The stress/strain curve of SLS Nylon test 
samples provided by the manufacturer, reveals a linear elastic region while in the nonlinear region the 
material behaves more like a brittle material. A typical stress–strain curve for a brittle material is linear: 
brittle materials do not have a yield point and at the ultimate strength fracture occurs without a noticeable 
prior change in the rate of elongation. The stress/strain curve of SLS nylon shows some non-linear plastic 
deformation, but fracture suddenly occurs without the typical strain-hardening and necking. For the 
functionality of the finger splint permanent deformation (non-linear plastic deformation) is unacceptable, 
and is used as the design limitation. It can be concluded that that SLS nylon can be modelled as linear 
elastic material using a yield strength of 40 MPa.  If the von Mises stress reaches the critical value of the 
yield strength, material failure will be considered due to permanent deformation (while fracture occurs at 
an Ultimate strength of 50 MPa). 

Table 6.1 Material properties of Selective Sintered Nylon (1, 2)
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6.2  Results

The results of the design process are provided as following 1) FEM analysis of the two basic 
models, 2) three improved parametric design concepts, 3) Final FEM results of the three design 
concepts. The FEM results include visualisation of the Von Mises stresses and total displacement 
under the applied loading conditions. The von Misses Stress addresses if and where material 
failure would occur under the applied load, while the displacement provides insight in the rigidity 
of the designs to maintain finger immobilization. 

6.2.1 FEM analysis basic design models

The FEM analysis of the stresses within the ring based splint design under loading that would be 
experienced during finger extension (Fig. 6.8) predicted that the maximum stress occurred at the 
connection of the proximal an distal ring (95 MPa) and exceeds the material tolerance of  SLS nylon (40 
MPa) and the Ultimate strength (50MPa) resulting in a fracture. When the same study was performed 
with the implementation of pure silver (Source: Solid Works model library), the ring design does appear 
to be suitable with 0,13 mm displacement and a maximal von Mises stress of 115 MPa (with reference to 
a tensile strength of 125 MPa). 

The oval-8 based splint design (Fig. 6.9) revealed a lower stress level (41 MPa), but this stress still 
exceeds the material tolerance of SLS nylon (40 MPa) within the plastic region. This would result in 
permanent deformation of 4,5 mm displacement (Fig. 6.8b) at the distal and proximal end of the splint. 
This means that the design would fail in keeping the finger in the right immobilization angle, in order 
to prevent hyperextension. When the same study was performed with the implementation of injection 
moulded nylon (Solid Works model library: nylon 101) the design appears to be more sufficient with 1,4 
mm displacement and a von Mises stress of 41 MPa (with reference to a yield strength of 60 MPa).

Figure 6. 6 General stress/strain curve Figure 6.7 Stress/strain behaviour of SLS nylon test 
samples
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6.2.2 Parametric design concepts

According to the FEM-analysis of the basic design it was concluded that reinforcement was required 
to make the designs stronger and more rigid, in order to decrease the risk of permanent deformation or 
material fracture. To integrate this reinforcement in the design, a brainstorm session was conducted in 
which various design strategies were explored through sketching. Three designs were then chosen to 
create a parametric model using Grasshopper. Each design is constructed from a different approach, as 
visualized in figures 6.10-6.13. 

Figure 6.8 a) Stress plot ring based splint design in SLS nylon b) displacement plot

Figure 6.9 a) Stress plot oval-8  based splint design in SLS nylon b) displacement plot

 

 

 

Figure 6.10 Parametric design I

Figure 6.11 Parametric design II
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6.2.3 FEM analysis design concepts

All three design concepts were created and optimized using a FEM-analysis to study the influence of 
width and thickness on mechanical performance. The FEM results of the 3 final concepts are provided 
in figures 6.12-6.14. Design I and II both are expected to be sufficient with a similar prediction of the 
mechanical performance: a von Mises stress of 20 MPa and 1,0 mm (Design I) and 0,85mm (Design 
II) displacement. Design III performed worse: it was expected to fracture under the predicted loading 
conditions. The design is stiff enough with 0.88mm displacement but the maximal stress level (54 MPA) 
exceeds the ultimate strength (50 MPa).

However, this interpretation is debatable. A closer look at the areas with the maximal stress revealed that 
in design II and III, the maximal stress (red spots) was initiated at the boundary between the free and 
fixated part of the splint model (clear blue area). The back part of the splint should indeed be restricted 
from moving as it is fixed around the finger. However, in the FEM model this boundary condition was 
implemented by fixating a demarcated part of back of the splint in all directions. In reality, it is expected, 
that this boundary conditions would distribute the stress much more gradually. But the computational 
model was restricted to four axis and straight boundary lines. Therefore, it is expected that the stress in 
this area will be better distributed in reality, and thus the risk on fracture in model II and III would be less 
than predicted. For the two basic designs and design concept I this was not the case, and for design 
concept II it did not result in an incorrect assumption. Therefore, revision of the FEM-analysis was only 
required for design III. Moving the boundary of the fixated part (Fig. 6.15), indeed revealed a gradual 
stress build up towards the boundary condition. From this point of view, it is expected that in reality crack 
initiation would not take place since the stress would not build up towards one specific point. 

Figure 6.12 Parametric design III

Figure 6.13 a) Stress plot design I  in SLS nylon b) displacement plot

Figure 6.14 a) Stress plot design II  in SLS nylon b) displacement plot

Figure 6.15 a) Stress plot design III  in SLS nylon b) displacement plot
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6.3   Concept selection

Prototypes were manufactured using SLS (Fig. 6.17 & Fig. 6.18) to test whether the product is actually 
a good solution to the problem.  The list of product requirements was  is used as a checklist to analyse 
if all product requirements were fulfilled, this qualification process was conducted in collaboration with 
hand therapists  as provided in Annex 6.1. An overview of the results per requirement category are 
provided in the table below, and the remarkable results are discussed to select the best option for further 
development. 

Figure 6.16 a) Stress plot with a displacement of the fixated boundary condition (clear blue 
area)

Table 6.2 – Design qualification

The three design concepts all were approved, but design I was preferred with respect to requirement 
3.1. *To create soft splint edges (requirement 3.1) necessary to prevent soft tissue stress, design II and 
III both require a modification outside the grasshopper script (The Rhinoceros function ‘fillet edges’ is 
not available in Grasshopper). This modification adds an extra step in the development process that 
still requires 3D-modelling skills, which is not preferred. This problem could (possibly) be overcome by 
writing an additional GH-script for the therefore required function. But for this project, design I will be 
embraced for further product development.

It should be noted that Requirements 1.2 ; 2.4 ;2.6 ; 2.10 ; 3,1 ;3,6 ;3,7 ;3,8 ;3.11 ;4.2 also require further 
investigation in a long-term clinical test. Due to time-constraints this will not be addressed in this project.

Figure 6.17 – Prototypes. From front to back: 
design 1; design 2; design 3.

Figure 6.17 – Prototypes. From left to right:
design 1; design 2; design 3.
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7 Synthesis phase III
         Final Solution

This phase starts with the selected concept and ends with a prototype that is 
successfully fabricated and tested. This chapter is composed of the following 
items:

7.1 Detailing
7.2 Technical drawings
7.3 Cost analysis 
7.4 Mechanical testing 
7.5 Failure Mode and Effective Analysis (FMEA)

First, all steps of the overall ‘make’ process will be described in detail. Then, the 
technical drawings will be explained in order to provide the necessary knowledge 
to replicate the parametric design models. The cost-analysis gives an overview 
of the cost of the 3D-printed splint compared to alternative solutions. Hereafter, 
the experimental test method and results for the validation of the mechanical 
performance are described under mechanical testing.  Finally, through a FMEA, all 
possible risks related to the product will be verified and concluded into a risk plan.
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7.1  Detailing

As a final solution, the overall process for local fabrication of a custom-fit finger splint includes the 
four steps as visualised in figure 7.1. To ensure quality and safety of the final device, this process 
of health service provision should be provided within this closed system. In this paragraph, each 
step will be further described in detail.

7.1.1 Measurement & Fabrication process

1

34

2MEASURE

3D PRINT 
manufactorer

PATIENT
HOME

APP
model generation

Figure 7.1 Measurement & fabrication process scheme
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1. Measure
Through an app on a tablet the user will be guided through the steps of measurement needed to generate 
the finger splint. The required measurements include the following parameters, and are visualized in 
figure 7.2:

• øF (mm) = front diameter 
• øM (mm)= middle diameter 
• øB (mm)= back diameter 
• θ(°) = angle of immobilization

The measurement input is automated through a digital calliper and hand goniometer communicating with 
the tablet. When using an analogy measurement instrument, the measurement input can also be entered 
manually.  

Figure 7.2 Measuring the finger

θ
L

ØF

ØM

ØB
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2. Model generation
The app enables the user to make a customized 3D-printed finger splint without any 3D-modelling skills 
or knowledge of digital fabrication. A working demo of the app, was successfully developed by Waag 
Society as shown in figure 7.3. 

In the working demo a tablet was connected to a local server (laptop), with 3D-modelling software 
(Rhinoceros & Grasshopper) running. Once the few measurements are taken, the server updates the tablet 
with a ready-to-be-3D-printed STL-file. This concept can be improved by creating a stand-alone tablet, 
excluding the need of a local server. In this way the user does not need to purchase the 3D-modelling 
software. However, this standalone operating procedure requires the generation of a database with all 
possible outcomes of the parametric model. 

3. Fabrication & 4. Delivery
Fabrication is performed by a professional 3D-printing services that prints according to the ISO standard 
for 3D-printing of medical devices. The app generates a standard order mail order including the STL file of 
the splint, and the following information to inform the manufacturer about the standardized manufacturing 
steps:

• Material: Nylon, PA2200 (ISO 9001)
• Print technology: Selective Laser (ISO-1348)
• Print orientation: according to figure 7.4
• Post processing:
 - Tumbling (for a fine and smooth finish)
 - Dyeing (colour option still limited to 13 colours)
 - Waterproof poly-urethane coating (stable, biocompatible polymer)

Figure 7.3 App 3D-print inger splint generation, Waag Society

According to the current order-to-delivery time of 3D-prints, the splint will be delivered at the patient’s 
home within 5 workdays.

 

7.1.2 Boundaries of the parametric model

The outcome of the parametric model is bounded by four input parameters, still the number of possible 
outcomes is infinite. For the generation of a size database the iteration process will therefore be limited 
as following:

• Length (L):
 Min: 27  mm 
 Max: 47,5 mm
 Step size: 1,0 mm
• Middle diameter (øM): 26 mm
 Step size: 1,0 mm

z

y

x
Figure 7.4 Print orientation, the Z-direction has the weakest 
tensile strength
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• Difference between diameters:
 øM- øF and øM- øB < 3,0 mm
• Angle (θ):
 Min:150°
 Max: 180°

This demarcation of the size range resulted from an evaluation of maximal and minimal finger dimensions: 
A maximal finger length of 95 mm was found and a maximal diameter at the joint of 26 mm, referring to the 
index finger of male participants (1). While the minimal finger length was found to be 54 mm with a width 
of 16 mm, which referred to the pinkie finger of female participants (1). The maximal and minimal splint 
length was approximated as half of the finger length.  

Now that the boundaries of the parametric models are known, all possible outcomes could be tested. 
However, testing procedures can be limited by verifying the most extreme output dimensions, as these 
exhibit the most extreme mechanical behaviour. Using the FEM analysis, it was predicted that an increased 
length result in a less rigid splint, and a wider splint is more prone to break. Therefore, this influence of 
the input parameters on mechanical performance is compensated through a change in splint width and 
thickness. The formulas implemented in the script of the parametric model are provided in the technical 
drawings in next paragraph.  

7.2 Technical drawings

The final parametric finger splint dimensions are provided in the technical drawing on the right. The 
Grasshopper script of the parametric finger splint model is provided in Annex 7.1. 
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7.3  Cost analysis

Table 7.1 present the costs of the parametric 3D-finger splint, in comparison with the 2 alternative solution 
that could be purchased by a patient him- or herself. The costs are based on the prices offered by 
Oceanz, the first professional 3D printing company in the Netherlands with ISO 9001 and ISO 13485 
certification. This final price includes:

Raw materials (PA2200, processed in accordance with ISO-9001)
Printing process in accordance with ISO-13485
Service costs
Post-processing: tumbling, dying and coating
Labour costs
21% BTW

7.4 Mechanical testing

An experimental test was developed to validate the mechanical performance of the fabricated 
splints. The purpose of the practical experiment is to determine if the test samples meet 
requirement 3.11. According to this loading requirement, all possible dimensional outcomes 
of the parametric finger splint model may not break under an applied load of 15,6 N, and 
the deformation under loading may not exceed an angular displacement of 10 degrees. This 
paragraphs described the method used to assess the structural response during loading, and 
provides the results and conclusion drawn from the experiment. 

7.4.1 Materials and method

In order to cover all possible dimensional outcomes of the parametric model, the test samples included 
the aforementioned most extreme dimensions. Each test sample was fabricated twice, giving a total of 8 
samples, as shown provided in the table and figure on the right.

Table 7.1 Cost analysis

The loading condition of the finger splint during hyperextension, as described in Annex 3.1, was simulated 
in an experimental test-setup according to the following steps:

• The middle part of the splint was fixated as shown in figure 7.6. 
• A camera on a tripod was located at a fixed position at 20 cm from the test sample, as shown in figure 

7.6. 
• A vertical force was applied at the distal ends of the splint by means of a physical weight. To limit the 

effect of horizontal forces compared to the setup in figure 7.6, the weight on each side of the splint 
was distributed through a separate rope, as shown in figure 7.7.

Figure 7.5 Test samples

Figure 7.6 Experimental setup Figure 7.7 Experimental setup
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The purpose of the practical experiment was to determine the failure and deformation behaviour under 
increased loading.  The experiment was performed for all 8 samples according to the following steps:

• The splint was fixated in the test-setup as described above.
• A photo was taken to capture the state of the splint before loading.
• The applied load was increased from 0 to 30 Kg (29,43 N), with steps of 5 Kg.
• A photo was taken each time a new load was applied, as shown in figure 7.7.
• After removal of the load, the sample was examined fractures and plastic deformation. 
• The angle of deformation under the applied load was subtracted from the photos, using a protractor.
• The experiment was performed twice at separate days, including the preparation of the test-set up. 

7.4.2 Results

The raw data provided in Annex 7.2 includes all photos and measurement of the loaded sample. Figure 
7.8 provides an overview of the measured deformation under the increased load. The slope of the graph 
represents the rigidity of the splint: the splint with minimal length and width was the least rigid and thus 
the most prone to deform, while the splint with minimal length and maximal width was the most rigid. It 
should be noted that all other possible dimensions as an outcome from the parametric model, could be 
covered by the area bounded by these slopes. Since these slopes refer to the behaviour of the most 
extreme dimensions, exhibiting the most extreme behaviour.

From figure 7.8 it can be seen that under an applied load of 15,6 Newton, none of the samples exceeds 
the angular displacement limit of 10 degrees. In addition, no fractures are permanent deformations were 
reported until an applied load of 30 N.

Figure 7.8 Test results

7.4.3 Conclusion 

In order to meet the loading requirement, all possible dimensional outcomes of the parametric finger splint 
may not break under an applied load of 15,6 N, and the angular displacement under loading may not 
exceed 10 degrees. According to the result of this experiment, this requirement is met. From this it can be 
concluded that the design and material concept can be approved, regarding mechanical performance. 

7.5  Failure Mode and Effective Analysis (FMEA)

A Failure Mode and Effective Analysis (FMEA) was used to analyse the mechanical risks of the 
developed product. Through identification of the major risks, the product can be improved in 
such a way that the risks are acceptable.

The first step in creating a Risk Plan is to identify the likely risks which may affect the product. A risk 
is defined was defined as “any event which is likely to adversely affect the ability of the product to 
achieve the defined objectives”. First, a series of risk categories are identified and for each category a 
list of potential risks. Second, risk quantification will be performed to quantify the likelihood of each risk’s 
eventuating, its impact on the product and surrounding business and the chance that the risk is not 
detected in time. The unacceptable risks are documented within the Risk Plan.

7.5.1 Risk identification and quantification 

The identified risk are provided in the table starting at the next page according to the following risk 
categories:

1. Ergonomic fit
2. Manufacturing and delivery
3. Functionality
4. Maintenance
5. Acceptance 

The risks are quantify regarding the likelihood of each risk’s eventuating, its impact on the product and 
surrounding business and the chance that the risk is not detected in time. Each risk was prioritized 
according to the overall score, which is found by multiplying the score of the likelihood (F), impact (S) and 
chance (P) of not detecting in time. Risks with a score (R) higher than 20 are not acceptable. 
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Table 7.2 Identified risks and qualification
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7.5.2 Risk plan

All unacceptable risk are documented within the Risk Plan in the table below. The Risk plan includes a set 
of actions to be taken to avoid, transfer or mitigate each risk. For each risk action identified, a resource is 
assigned to be responsible for undertaking the action.

Table 7.3 Risk Plan
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8 Conclusion, Discussion,  and   
     Recommendations

This chapter summarizes the main findings of this study, provides conclusions, 
discusses results and indicates where further research should focus on. This 
chapter is composed of the following items:

8.1 Conclusion
8.2 Discussion
8.3 Recommendations

In the conclusion the research question will be answered. The discussion 
debates the disadvantages of the solution and the limitation of this study.  Finally, 
recommendations will be provided for further research and development of the 
final solution.
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8.1 Conclusion

The answer on the research question “Can digital fabrication enable patient access to local fabrication 
of customized orthoses with the quality and safety of professionally-graded medical devices?” will 
be provided in two parts. First, the expected challenges resulting from the background study will be 
concluded. Second, the final solution resulting from the design case study of the finger splint will be 
summarized.

The background study revealed how digital fabrication effects the quality, safety and access 
to local fabrication of orthoses. This was concluded based on the following findings: First, the 
current regulatory guideline is designed for mass production and less suitable for local fabrication 
of personalized medical devices. Due to the distributed manufacturing landscape enable by the 
rise of 3D-printing and Internet, the fundamental definitions of a ‘medical device’, ‘manufacturer’ 
and ‘custom-made’ get blurred. This was expected to results in complex regulatory issues and 
raises many question about safety and responsibility. Second, the background study revealed 
that underlying technique of additive manufacturing limits material options and negatively affects 
the quality and mechanical safety of the printed object. Adding to this problem that a controlled 
and consistent output is difficult to achieve with the currently available desktop 3D-printers. 
Therefore, it wat expected that orthoses designers and biomedical engineers are challenged 
to rethink mechanical design, verification and validation methods. Third, the background study 
demonstrated that the access to digital fabrication is still restricted to people with 3D-modelling 
skills and knowledge of additive manufacturing. This challenges software developers to develop 
tools to provide digital fabrication to a wider audience.

The second part of the research, the design case of the finger splint, made clear how these 
limitations can be overcome. The provided solution is an application that enables the hand 
therapist or patient to 3D-print a customized finger splint, without the need for 3D-modelling 
skills or knowledge of digital fabrication. This is made possible by parametric design software 
and a ISO-certified 3D-printing service. Parametric design allows for easy adjustment to the 
patient’s personal anatomical characteristics of the finger. In this production process the print 
company could guarantee quality and safety of the manufacturing process. While parametric 
design guarantees quality and safety of the design file. The development process demonstrated 
that mechanical verification and validation methods could still be applied due to the parametric 
design boundaries. This leads to the conclusion that digital fabrication potentially enables patient 
access to local fabrication of customized orthoses with the quality, safety of professionally-
graded medical devices.
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8.2 Discussion

A considerable drawback of the provided solution is the fabrication- and delivery time resulting 
from the selected manufacturing process. Contrary to expectations, the technology and 
healthcare system is not yet ready for time-efficient and high-quality fabrication closer to the 
patient. It is questionable to what extend this is vital in the future. However, if the technology 
and the healthcare system evolves, the provided application would be still viable in a different 
manufacturing setting. 

This study did not address the guidance of quality and safety when fabrication of orthoses 
happens in a more Do-It-Yourself context, for instance within the settings of a Fablab. The study 
focussed on a solution that meets the quality and safety standards of the regulatory authorities. 
For a low-risk medical device, like a finger splint, this approach is quite overdone as it increases 
complexity and limits possibilities. However, this approach makes the study results relevant for 
higher risk devices. On the other hand, it would be of interest to explore what makers themselves 
can do to minimize risks.

A second drawback of the provide solution is that the design freedom is limited design by the 
parametric input. This makes it difficult to develop more complex orthoses. However, this limited 
customizability also appeared to be an advantage. Compared to traditional ‘custom-made’ 
devices, this way of customizing has a finite number of outcomes making all results predictable. 
In addition, the closed manufacturing process was designed is such a way that all results could 
be traceable and reproducible just like professionally-graded medical devices. Contrary to 
expectations, the provided solution enables custom-made orthoses that can meet the regulatory 
guidelines of mass-production. Therewith, this study proved that this way of mass-customization 
could be the future of the medical device industry. 

It should be noted that the provided proof-of-concept was approached from an engineering 
perspective. Although the product was presented and positively received by medical experts, the 
clinical application still requires further research. Moreover, the verification and validate method 
of the mechanical performance was arguable as it included many assumptions.  Revision of 
the loading assumptions and design optimization after experimental testing, was not performed 
due to time constraints. In addition, the export steps into solid works was an inefficient, time-
consuming process requiring a lot of trial and error. In future research, more efficient methods 
should be explored. However, a proper foundation is provided to continue the developed with 
focus on the user and the clinical setting. Finally, to come to a more generalised answer to the 
research questions, other orthoses should also be studied.

8. Discussion
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8.3 Recommendations for further research

In order to enable fabrication closer to the patient, future research should be focussed on the 
development of 3D-printers suitable for implementation within the clinic of the hand therapist.   
that enable a fast, controlled and consistent output that meets the requirement for orthoses. 
Furthermore, the 3D-technology should be improved regarding the quality of the printed object, 
to decrease the required amount of post-processing. 

To improve the possibilities of parametric design in the context of healthcare, the software should 
be further developed to meet the desired functions for the creation of orthoses.  For instance, 
integration 3D-scan data into the model would be interesting to allow automated modelling 
of more complex orthoses . Furthermore, integration of the FEM analysis into the parametric 
modelling software would be a significant improvement to allow real-time mechanical feedback 
and automated design optimization.  

Now that the possibilities of parametric design and additive manufacturing are approved to 
be successful for local fabrication of orthoses, it is recommended to further develop the final 
solution for a market introduction. First steps would be a usability research of the overall make- 
and manufacturing process, and a clinical research to approve the effectiveness of the final 
product. Subsequently, the database can be expanded with different functional splints and 
different design options. In addition, a business model should be developed to investigate 
how the system can be implemented. Market introduction would be an important step in the 
accomplishment of on-demand production and mass-customization in a healthcare context.


